

Class
$$(37.6)$$

 $f(x) = 4x - 3$ $g(x) = x + 5$
1) $(5+9)(x) = 5(x) + g(x)$ 2) $(5-g)(x)$
 $= 4x - 3 + x + 5$ $= 4x - 3 - (x + 5)$
 $= 5x + 2$ $= 4x - 3 - x - 5$
 $= 3x - 8$
3) $(5 \cdot g)(x)$ $+) (\frac{5}{g})(x)$
 $= (4x - 3)(x + 5)$ $= \frac{5(x)}{g(x)}$; $g(x) \neq 0$
 $= 4x^2 + 20x - 3x - 15$ $= \frac{4x - 3}{x + 5}$ $x + 5 \neq 0$
 $= \frac{4x^2 + 17x - 16}{x + 5}$ $x + 5 \neq 0$

Solve
$$-6 < -4x + 2 \le 2$$
 $-6-2 < -4x + 2 - 2 \le 2-2$
 $-8 < -4x \le 0$
 $-8 < -4x \le 0$
 $-8 > -4 > -4 > 0$
S.B.N. $\{x \mid 0 \le x < 2\}$
 $\Rightarrow 0 \le x < 2$
I.N. $[0,2)$

$$A = \left\{ 3, 4, 5, 6 \right\} \quad B = \left\{ 5, 7, 8, 9 \right\}$$
Find

1) AUB
$$= \left\{ 3, 4, 5, 6, 7, 8, 9 \right\} \quad = \left\{ 5 \right\}$$
Find:
$$= \left\{ 3, 4, 5, 6, 7, 8, 9 \right\} \quad = \left\{ 5 \right\}$$
Find:
$$= \left\{ 6, 4, 6, 7, 8, 9 \right\} \quad = \left\{ 5, 7, 8, 9 \right\}$$

$$= \left\{ 3, 4, 5, 6, 7, 8, 9 \right\} \quad = \left\{ 5, 7, 8, 9 \right\}$$

$$= \left\{ 3, 4, 5, 6, 7, 8, 9 \right\} \quad = \left\{ 5, 7, 8, 9 \right\}$$

$$= \left\{ 3, 4, 5, 6, 7, 8, 9 \right\} \quad = \left\{ 5, 7, 8, 9 \right\}$$

$$= \left\{ 3, 4, 5, 6, 7, 8, 9 \right\} \quad = \left\{ 5, 7, 8, 9 \right\}$$

$$= \left\{ 3, 4, 5, 6, 7, 8, 9 \right\} \quad = \left\{ 5, 7, 8, 9 \right\}$$

$$= \left\{ 5, 9, 9 \right\}$$

$$= \left\{ 6, 9,$$

$$\begin{cases}
f(x) = \begin{cases}
-x^3 & \text{if } x < 0 \\
\sqrt{x} & \text{if } x > 0
\end{cases} = \sqrt{100}$$

$$\begin{cases}
f(x) = \begin{cases}
-x^3 & \text{if } x < 0
\end{cases} = \sqrt{100}$$

$$= \sqrt{1$$

Find the domain:

1)
$$f(x) = \frac{8}{x}$$

2) $f(x) = \frac{x-2}{x-1}$

2) $f(x) = \frac{x}{x-1}$

2) $f(x) = \frac{x}{x-1}$

2) $f(x) = \frac{x^2}{x-1}$

2) $f(x) = \frac{x^2}{x-1}$

2) $f(x) = \frac{x^2}{x-1}$

3) $f(x) = \frac{x^2}{x+6}$

4) $f(x) = \frac{-10}{x^2-36}$

5) $f(x) = \frac{-10}{x^2-36}$

5) $f(x) = \frac{-10}{x^2-36}$

6) $f(x) = \frac{-10}{x^2-36}$

7) $f(x) = \frac{-10}{x^2-36}$

8) $f(x) = \frac{-10}{x^2-36}$

8) $f(x) = \frac{-10}{x^2-36}$

9) $f(x) = \frac{-10}{x^2-36}$

10) $f(x) = \frac{-10}{x^2-36}$

11) $f(x) = \frac{-10}{x+1}$

12) $f(x) = \frac{-10}{x+1}$

13) $f(x) = \frac{-10}{x^2-36}$

14) $f(x) = \frac{-10}{x^2-36}$

15) $f(x) = \frac{-10}{x^2-36}$

16) $f(x) = \frac{-10}{x^2-36}$

17) $f(x) = \frac{-10}{x^2-36}$

18) $f(x) = \frac{-10}{x^2-36}$

19) $f(x) = \frac{-10}{x^2-36}$

19) $f(x) = \frac{-10}{x^2-36}$

10) $f(x) = \frac{-10}{x^2-36}$

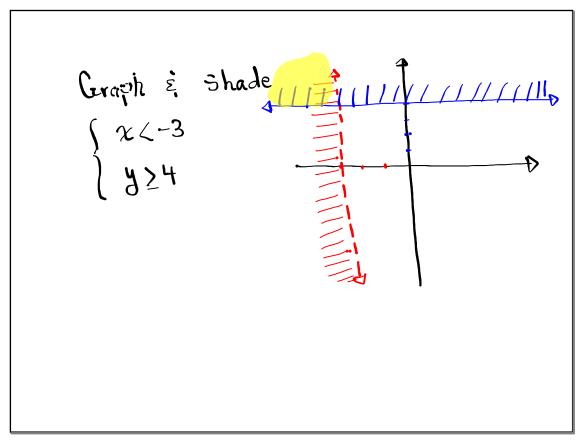
11) $f(x) = \frac{-10}{x^2-36}$

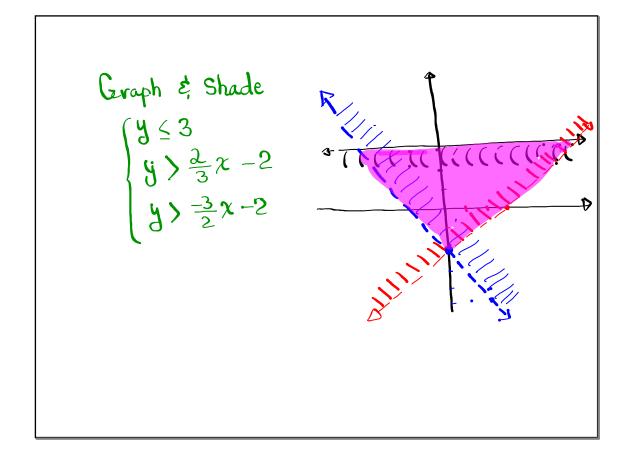
12) $f(x) = \frac{-10}{x^2-36}$

13) $f(x) = \frac{-10}{x^2-36}$

14) $f(x) = \frac{-10}{x^2-36}$

15) $f(x) = \frac{-10}{x^2-36}$

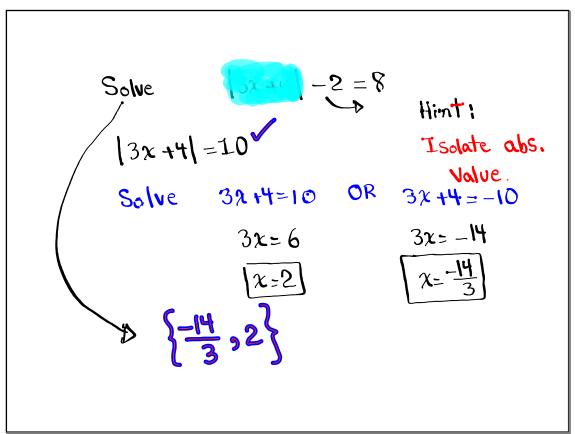

16) $f(x) = \frac{-10}{x^2-36}$

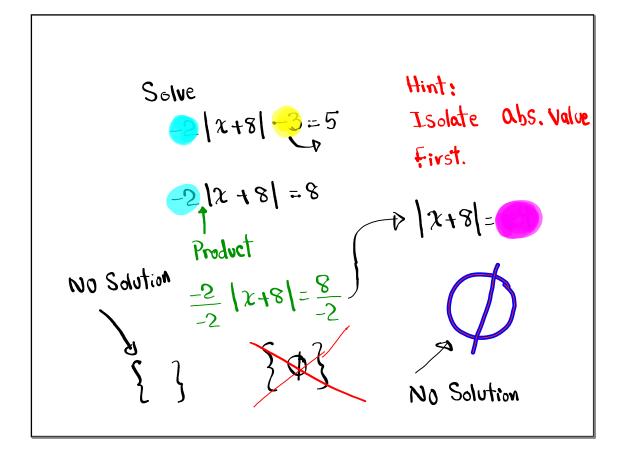

17) $f(x) = \frac{-10}{x^2-36}$

18) $f(x) = \frac{-10}{x^2-36}$

19) $f(x) = \frac{-10}{x^2-36}$

1


Solve
$$|3x-3|=1$$


Solve $|3x+b|=K$

No solution when $K<0$

otherwise $ax+b=K$ or $ax+b=K$

Solve $5x-3=1$ or $5x-3=-1$
 $5x=10$
 $x=2$
 $x=4$
 $x=4$
 $x=4$
 $x=4$

- 1) Exam 1: One Week Srom Monday
 - 1) Camera On
 - 2) Mic On
 - 3) I must Confirm Your exam before You leave.
 - 4) Exam, then Lecture.
 - 5) SG 1-6

Pick up the Pace

Abs. Value In equalities K) O

[ax+b] < K, [ax+b] < K

[ax+b] > K, [ax+b] > K

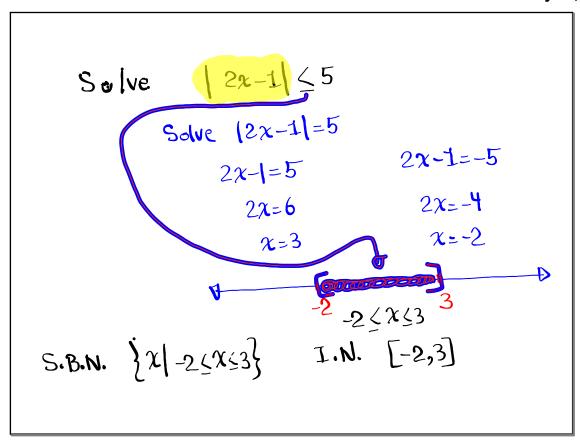
[ax+b] > K, [ax+b] > K

[ax+b] = K

[ax+b] = K

[ax+b] = K

[ax+b] = K


[ax+b] < K

[ax+b] < K

[ax+b] < K

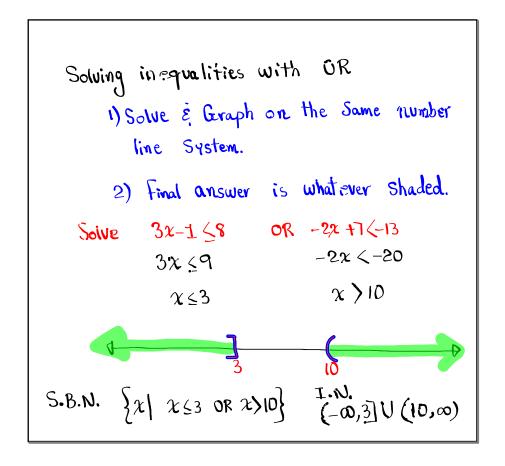
[ax+b] < K

[ax+b] > K

Solve
$$2|2x+3|45 \le 1$$
 Hint:
Always isolate
$$-2|2x+3| \le -4$$
 Abs. Value
$$\frac{-2}{-2}|2x+3| \ge \frac{-4}{-2} \implies |2x+3| \ge 2$$
Solve $|2x+3|=2$

$$2x+3=2$$

$$2x+3=2$$


$$2x+3=2$$

$$2x=-5$$

$$x=\frac{-1}{2}$$
1. N.:
$$(-\omega, \frac{-5}{2}] \cup [\frac{-1}{2}, \omega)$$

$$\frac{-5}{2}$$

$$\frac{-5}{2}$$

Solve
$$|3x-7| > -10$$
 All Real numbers \mathbb{R}

O or + $(-\infty,\infty)$

Solve $|5x+3| < -8$

O or + $\{3\}$

No Solution

To Graph and Shade
$$(3)$$
 Solve (3)

② Solve
$$|2x-7|=|x-8|$$